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a b s t r a c t 

Major assumptions in computational intelligence and machine learning consist of the avail- 

ability of a historical dataset for model development, and that the resulting model will, to 

some extent, handle similar instances during its online operation. However, in many real- 

world applications, these assumptions may not hold as the amount of previously available 

data may be insufficient to represent the underlying system, and the environment and 

the system may change over time. As the amount of data increases, it is no longer feasi- 

ble to process data efficiently using iterative algorithms, which typically require multiple 

passes over the same portions of data. Evolving modeling from data streams has emerged 

as a framework to address these issues properly by self-adaptation, single-pass learning 

steps and evolution as well as contraction of model components on demand and on the 

fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks 

for clustering, classification and regression and system identification in online, real-time 

environments where learning and model development should be performed incrementally. 

© 2019 Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

1. Introduction 

Progress of computer and communication technology has increased the capability to produce large amount of heteroge-

neous data from distinct autonomous sources endlessly. The amount of data increases continuously and changes rapidly over

time. These data sets are called data streams. Data streams are common in online trading, financial analysis, e-commerce

and business, smart home, health care, transportation systems, global supply logistic chains, smart grids, industrial control,

cyber-security, and many other areas. 

Data stream processing brings unique challenges which are not easily handled by many of the current computational

intelligence and machine learning methods operating in batch off-line mode. This is because data streams are characterized

by the following aspects [70] : i.) the sample samples in a stream arrive online, ii.) the system has no control over the order

in which data samples arrive, iii.) data streams are typically unbounded in size as samples are sequentially recorded as long
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as the whole system operates and iv.) once a sample is processed, it should be ideally discarded to keep virtual memory

low and to cope with (constant) computational demands (ideally in real-time). Ideally, machine learning methods should

readily adapt to changing situations occurring over the life-time of a stream. The data generation processes are emergent

and dynamic over time, thus stream data processing methods must be capable to adapt to new situations (such as system

drifts or non-stationary environments). An important question is how to transform stream data into knowledge. Machine

learning and computational intelligence algorithms may fail when they encounter a situation that is distinct from the history

embedded in historical data sets. Models are common in science and engineering, and in the development of meaningful

models in the domain using data from non-stationary environments must allow models with the scope and granularity

necessary to answer fundamental cause and effect relationships from new experiences. The demand of knowledge from

data often entails interpretability of models in order to really understand the extracted knowledge. Rule-based models,

whom evolving (neuro-)fuzzy systems belong to, typically offer better interpretable insights than pure neural networks or

deep learning approaches. 

Online learning is a powerful way to deal with stream data. An online learning algorithm observes a stream of exam-

ples to assemble a model and make predictions. It receives and uses immediate feedback about each prediction to improve

model’s performance. In contrast to machine learning and statistical learning schemes, online learning from data streams

does not make assumptions on the distribution(s) of the observations. This is because the behavior it tries to predict changes

over time in unforeseen ways, causing concept drifts and shifts. Concept drift denotes the way the data distribution changes

gradually in time, whereas concept shift refers to a sudden, abrupt change of the characteristics of the data distribution.

As data may evolve over time, data streams endow temporal locality. At the model level, the challenge is to develop global

models by combining locally developed models to form a unified knowledge. This requires algorithms which are carefully

designed in order to verify correlations among local models in the data-time space, and to combine the outputs from mul-

tiple local models in a proper way to achieve highly accurate overall models. 

The impact of concept drift and shift in learning algorithms is enormous. While the effect of concept drift can be atten-

uated using e.g. model parameter adaptation procedures, concept shift may require a search in the underlying hypothesis

space, which may be distinct from the current one. The key difference of evolving systems to online incremental machine

learning (inc-ML) is their ability to simultaneously manage any significant changes (drift, shifts, non-stationary behaviors,

environmental conditions etc.) in the system by using both, parameter and structural adaptation algorithms to process a

data sample at most once (termed as single-pass property), while in inc-ML typically only parameters are updated, but no

intrinsic structural change in the model is conducted. 

Many types of data stream algorithms have been developed for clustering, classification, frequent pattern mining,

anomaly detection, and numerous applications in distinct domains such as sensor networks, real-time finance, forecast-

ing, control of unmanned vehicles, chaotic systems, and diagnosis have been reported [1,43,70,170] . Several algorithms and

applications of evolving intelligent systems in clustering, classification, forecasting, control, diagnosis, and regression can be

also found in the literature [18,132] . 

This paper gives a systematic survey on evolving systems, focusing on (neuro-)fuzzy systems in clustering, regression,

identification, and classification. The purpose is to introduce the major ideas and concepts of evolving (neuro-)fuzzy sys-

tems, to provide an overview about architecture types and their main structural components as well as the respective basic

incremental learning algorithms to address parameter adaptation and structural evolution properly. The paper also attempts

to guide the reader to the essential literature, the main methodological frameworks and its foundations, and the design

principles needed to develop applications as well as advanced concepts to make evolving (neuro)-fuzzy systems, E(N)FS,

more robust and better applicable in real-world scenarios. The remainder of the paper is organized as follows. In the next

section, the evolving systems are presented in general. An overview of various approaches comprising different evolving

algorithms based on neuro-fuzzy models in clustering, regression, identification, and classification are given. In Section 3 ,

the different mechanisms of adding clusters together with safety conditions and different ways of initializing new clusters,

mechanisms for merging clusters, and mechanisms for splitting and removing clusters are discussed. Thereby, clusters are

usually associated directly with components of (neuro-)fuzzy models, i.e. with rules and neurons. Section 4 discusses several

important advanced concepts which were developed during recent years to improve robustness, convergence, generalization

performance, usability and applicability of E(N)FS. At the end, some future directions and conclusion are given. 

2. Evolving systems 

Many systems are characterized by complex behaviors that emerge as a result of nonlinear spatio-temporal interactions

among their components. Adaptation gives a system flexibility to improve its short-term performance, and increases its

chances to survive in the long-term despite of changes in the environment and in its own components. While small changes

in system parameters can be handled as a form of uncertainty, and can be properly addressed by using parameter estimation

mechanisms, changes in the system structure requires a higher level of adaptation. An adaptive system is a nonlinear system

that evaluates its performance, assesses the operating conditions of its components, measures the state of the environment,

and adapts its dynamics to continuously meet performance specifications. In addition to parameter estimation, adaptation

requires maintenance actions for performance and goal achievement (also termed as model maintenance) whenever large

changes in the system structure and in the environment occur. 
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Fig. 1. Types of evolving systems. 

Fig. 2. Framework of evolving systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adaptive and learning systems have been studied in science and engineering, especially in the area of adaptive control

and system identification since the early fifties [35,188,189] . In adaptive control, the term adaptive means a class of de-

sign techniques which are applicable when the system model is partially known. These techniques either subsume some

form of parameter adjustment algorithm [75] , employ a set of finite local models and controllers with higher level super-

visory switching [106] , or use iterative learning techniques [3] . Adaptive control design techniques are mostly model-based,

equipped with data-driven parameter estimation and self-tuning algorithms. 

The field of evolving systems can be traced back to the year 1991 with the publication of the paper [149] , where the

method resource allocating network (RAN) was introduced. It deals with a neural network which can be adapted based on

gradient descent learning and the chain rule to propagate errors backwards. Later the authors in [67] suggested a growing

cell structure (GCS), which is a class of self-organizing neural networks that control structural changes using supervised

or unsupervised learning. These papers did not attract much attention in the research community, perhaps because neural

networks were not sufficiently established as a scientific discipline or stream mining topics were not really an issue at

these days (the whole field of machine learning with the first journal arising in 1986 was in its infants, especially because

of limited computer resources at this time). The field of evolving systems faced a tremendous development much latter

(starting around the beginning of the 00s). Fig. 1 shows an overview of the different types of evolving intelligent systems. 

Evolving systems are adaptive intelligent systems that, differently from adaptive and machine learning systems of the last

decade, learn their structure and parameters simultaneously using a stream of data. The structural components of evolving

systems can be artificial neurons, production rules, fuzzy rules, data clusters, or sub-trees [18,120] . The structure of rule-

based systems is identified by the nature and the number of rules. For instance, evolving fuzzy rule-based systems may use

linguistic fuzzy rules, functional fuzzy rules, or their combination. The structure of neuro-fuzzy systems is in turn recognized

by the nature of the neurons, the network topology, and the number of neurons in the hidden layers. 

Evolving intelligent systems as a framework to embody recursive data processing, single-pass incremental learning, and

methods to develop systems with enduring learning and self-organization capabilities were first conceptualized in [13] when

the term was coined. The authors use the term evolving in the sense of gradual development of the system structure (rule-base

or the architecture of the neural network that represents the system) and their parameters as Fig. 2 shows. The authors also

contrast the name evolving with evolutionary as used in genetic algorithms and genetic programming: while evolutionary

processes proceed with populations of individuals using recombination and variation mechanisms during generations (typ- 

ically in a temporally static, off-line optimization context), evolving processes advance over time during the life span of the

system. 
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In summary, while adaptive systems in control and system theory deal predominantly with parameter estimation, and

evolutionary algorithms with populations of models to produce new models, evolving systems benefit from learning from

experience, inheritance, gradual change and knowledge generation from (temporal) streams of data [74] . 

Important milestones in the history of evolving systems can be mentioned such as the publication of the monographs:

Evolving Connectionist Systems [99] , Evolving Intelligent Systems [18] , and Evolving Fuzzy Systems — Methodologies, Advanced

Concepts and Applications [132,140] ; and the beginning of the international journal entitled Evolving Systems [20] by Springer

in 2010. In the next two subsections, we discuss the most important key approaches for evolving modeling which have

appeared during the last 15 years, starting with clustering, regression and identification and then moving to classification

methods. 

2.1. Evolving systems in clustering, regression, and identification 

This section overviews evolving algorithms for clustering, regression and identification. The emphasis lies on systems

that we face in real life, namely systems that are nonlinear in nature and dependent on the influence of the environment,

which may vary over time. This also means that the behavior of the systems changes over time. To deal with nonlinear

and time-varying processes, the change of the behavior should be identified online, and ideally in real time. However, since

the data are continuously generated from different sources, their amount is usually very large and samples can be highly

heterogeneous and of very high dimension. Therefore, existing intelligent technologies should be adapted through the use

of online learning algorithms so that big data streams can be processed in real time, [20,70] . The use of off-line methods in

this kind of problem is not possible, [10] , neither it is in the case of significant dynamic system changes and non-stationary

environments (often appearing in complex real-world scenarios) [170] . This is especially important when the model of such

systems is used in control, pattern recognition, monitoring or supervision. 

In recent years, a number of successful evolving methods has been developed. The structure of the resulting models is

usually based on fuzzy rules, neural networks or hybrid neuro-fuzzy concepts. Some important methods based on fuzzy

models can be mentioned: eTS [10,14,24,161] , xTS [29] , + eTS [19] , FLEXFIS [129] , FLEXFIS + [130] , GS-EFS [139] , IBeM

[109,113] , FBeM [112,115] , and eFuMo [59] . 

Similarly, some of the most important neuro-fuzzy-based methods are: EFuNN [94,95] , DENFIS [96] , eGNN [114,116] , GAN-

FIS [31] , SOFNN [121] , SAFIS [163] , SCFNN [126] , NFCN [125] , D-FNN [196] , GD-FNN [197] , SONFIN [91] , NeuroFAST [191] ,

RAN [149] , ESOM [53] , Neural Gas [68] , ENFM [176] , GAP-RBF [86] , eFuMo [59] , SOFMLS [165] , PANFIS [152] and RIVMcSFNN

[158] . The majority of the evolving methods used in regression is based on neuro-fuzzy local RBF models ( radial basis func-

tion models ) or on their generalized form, GRBF (GANFIS). The basic RBF models provide Gaussian membership functions

with equal widths, as proposed in [197] . Other models suggest the use of ellipsoidal basis functions (EBF), which allow

different widths of membership functions. This kind of approach is given in GD-FNN [197] , and in SOFNN [121] . In eGNN,

hyper-rectangles and trapezoidal membership functions with different widths are used. In [101] a new approach to evolving

principal component clustering algorithms with a low run-time complexity for LRF data mapping is presented. In [181] , a

general evolving fuzzy model based on supervised hierarchical clustering for the design of experiments is described (see

also Section 4.6 ). A general evolving fuzzy model for process control is shown in [202] . It is also remarkable that in SOFMLS

and PANFIS an upper bound for the average of the identification error can be provided, which guarantees convergence and

stability of the model (parameters), see also Section 4.5 . 

Evolving systems, similarly as adaptive neuro-fuzzy systems, learn from data streams by using learning algorithms to

adapt their parameters in an online manner [194] . The parameters in this case are subdivided into linear and nonlinear

ones. The nonlinear parameters, such as centers of clusters, width of radial basis functions, (inverse) covariance matrices or

information granules, to mention a few, are related to the partition of the input-output space, whereas the linear parameters

refer to the parameters of locally valid affine models. The partition of the input-output space is usually done by using dif-

ferent modifications (fuzzy) clustering methods, which are adapted for online usage from their off-line counterparts. These

methods are unsupervised and aim at granulating the input-output space to achieve best possible representations of data

streams (according to distance- and density-based criteria). The eTS method, for example, uses recursive clustering with

subtraction [11] ( subtractive clustering [47] ). The ENFM method – a recursive version of the Gath-Geva clustering method –

and eFuMo use recursive c-means and a recursive Gustafson-Kessel clustering algorithm [57] . To adapt local linear parame-

ters, generally a recursive version of the least squares method, eventually with regularization, forgetting or weighting factor

is employed. For example, FBeM [115] uses a specificity-weighted recursive least squares method. 

Evolving fuzzy and neuro-fuzzy methods can also be divided according to the type of the model. Basically, the most fre-

quent are the models that implement first-order Takagi-Sugeno fuzzy inference systems (SONFIN, D-FNN, GD-FNN, DENFIS,

eTS, xTS, FLEXFIS( + ), IBeM, FBeM, eGNN, NeuroFAST, SOFNN) or zero-order Takagi-Sugeno models (SCFNN, SAFIS, GAP-RBF,

EFuNN). The essential difference between them is the use of a locally valid afine function or a constant in the consequent

terms of the rules. Some evolving methods are based on generalized forms of fuzzy models, which consist of a combina-

tion of Mamdani, and first-order Takagi-Sugeno models (GANFIS, FBeM, eGNN, eMTSFIS [85] ) and thus can achieve linguistic

interpretation (due to the Mamdani part) with solid or high precision (due to the Takagi-Sugeno part). 

Evolving methods can also be distinguished regarding the ability of adaptation. Notice that some fuzzy and neuro-fuzzy

methods need the initial structure of the model (for example: GANFIS, ANFIS), which is obtained by off-line clustering. In

this case, the number of fuzzy rules is constant during online operation and therefore the methods are not considered evolv-
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ing methods, but adaptive methods since only parameter adaptation is performed online. The first methods to change the

structure of the model were called incremental methods. These methods are equipped with mechanisms to add new local

models or rules on demand, however they do not have mechanisms to delete old, useless or inactive rules. These meth-

ods include RAN, SONFIN, SCFNN, NeuroFAST, DENFIS, eTS, FLEXFIS. Some methods are also supplied with mechanisms to

merge or combine clusters that are similar in some sense (ENFM, SOFNN). The incremental methods that are provided with

procedures to delete and merge clusters are seen as real evolving methods. Some important fuzzy and neuro-fuzzy evolv-

ing methods are ESOM, SAFIS, SOFNN, GAP-RBF, Growing Neural Gas (GNG), EFuNN, IBeM, FBeM, eGNN, D-FNN, GD-FNN,

ENFM, simpl_eTS, xTS, + eTS, FLEXFIS + , eFuMo, to mention a few. At this point, it is worth to mention alternative regres-

sion algorithms (which do not embed neuro-fuzzy components, but a different form of rule-based structure), in particular

the incremental fuzzy linear regression tree algorithm of [119] . The algorithm starts with a single leaf with an affine model,

and proceeds by replacing leaves with sub-trees. The algorithm uses a recursive statistical model selection test to update

the tree. 

2.2. Evolving systems in classification 

This section overviews evolving algorithms in classification. Classification is the problem of identifying in which category

a new observation belongs. In [51] , the classification task is described formally as follows: 

Given a set of training examples composed of pairs { x i , y i }, find a function f(x) that maps each attribute vector x i to its

associated class y i , i = 1 , 2 , . . . , n, where n is the total number of training samples. 

An algorithm that performs classification is called a classifier. To train these classifiers, they receive as input a set of

labeled data samples [84] . The training process can be carried out in off-line mode by considering all the data at once

before the online operation of the classifier. In that case, it is assumed that a data set containing samples that represent all

possible situations is available a priori . It is also assumed that changes of the trained classifier over time will not be required

when new data arrive. This kind of classification approach is useful in some specific applications [34] . 

However, it is important to remark that, since the beginning of the 21st century, researchers have faced not only the

problem of processing large data sets, but also handling data streams immediately after the samples arrive [56] . As men-

tioned before, since the data are continuously generated from different sources, they are usually very large in size and of

very high-dimension. In addition, the data usually need to be processed in real time. Often, the training data set becomes

available in small batches over time because the acquisition of these data continuously is expensive and time-consuming.

For this reason, the development of classifiers which are able to manage continuous and high-volume data streams has

taken place. Big, diverse and rapidly-produced data has also presented novel challenges in classification that are required to

be tackled. These new data also provided opportunities to explore recently emerged scientific domains [73] . 

This new type of data and emerging needs are related to kinds of classifiers called incremental, which may update their

parameters with new data samples. The development of incremental learning systems that can be trained over time from a

data stream is a major open problem in the data mining area. An incremental classifier receives and integrates new examples

without the need to perform a full re-learning phase from scratch. As discussed in a survey on supervised classification from

data streams [117] , a learning algorithm is incremental if for any example x 1 , …, x n , it is able to generate hypotheses f 1 , …, f n ,

such that f i +1 depends only on f i and x i , the current example. The notion of current example can be considered as the latest

processed example. Incremental classifiers must learn from data much faster then the off-line mode classifiers. Thus, most

of the incremental classifiers read the examples just once, process them through the update algorithm and discard them,

afterwards — such a property is also called single-pass algorithm. In this way, they can efficiently process large amounts of

data. Updates of model structures and parameters are mostly aimed to be carried out in a way such that convergence to the

hypothetical batch solution (as achieved when using all the data samples at once for model training) is approached. This is

an important criterion, because batch algorithms (mostly) produce optimal solutions in the sense of an underlying objective

function. 

Incremental classifiers have been implemented in many different frameworks: 

• In relation to decision trees, the first incremental versions emerged in the 1980s. ID4 [117] and ID5R [192] concerned

incremental classifiers based on ID3 ( Iterative Dichotomizer 3 ) [162] – a well-known algorithm proposed by Quinlan in

1986. Later, in 2006, Ferrer-Troyano et al. [61] proposed a classification system based on decision rules that may store

updated border examples to avoid unnecessary revisions when virtual drifts are presented in the data. Consistent rules

classify new test examples by coverage, and inconsistent rules classify them by distance – similar to a nearest neighbor

algorithm. The main characteristics of this approach is that the model is incrementally updated according to the new

environmental conditions. 

• Incremental classifiers have been implemented using neural networks [203] . An example of neural classifier is ARTMAP

( Adaptive Resonance Theory ) [40] , a class of neural network architectures that performs incremental supervised learning in

response to input vectors presented in arbitrary order. Later, a more general ARTMAP system [41] that learns to classify

input data by a fuzzy set of features was introduced. 

• In relation to a probabilistic framework, the Bayesian classifier is an effective methodology for solving classification prob-

lems when all features are considered simultaneously. However, sometimes, all the features do not contribute signif-

icantly to the classification. In addition, a huge computational effort is required when the features are added one by
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one in a Bayesian classifier in batch mode using the forward selection method. For this reason, in [2] , an incremen-

tal Bayesian classifier for multivariate normally-distributed data was proposed. In [46] , several incremental versions of

Bayesian classifiers are addressed. 

• SVMs ( Support Vector Machines ) perform classification by constructing an n -dimensional hyperplane that optimally sep-

arates the data into two categories [193] . Support Vector Machine is a classical machine learning technique that can

help multi-domain applications in big data environment [179] . However, SVM is mathematically complex, computation-

ally expensive and furthermore requires a huge virtual memory in the case of larger data sets/streams, because of the

kernel trick inducing a kernel matrix with a size of N × N with N the number of training samples. A training process

on new data, discarding previous data, gives not optimal, but approximative results only. Considering this aspect, the

authors in [44] propose an incremental procedure (an online recursive algorithm) for training SVMs using one vector at

a time. In [198] , an incremental algorithm that utilizes the properties of support vector sets and accumulates the distri-

bution knowledge of the sample space through the adjustable parameters is proposed. The algorithm LASVM [39] is an

online approach that incrementally selects a set of examples for SVM learning. A variety of incremental SVM algorithms

is proposed in [55] . 

• In relation to lazy learning approaches, such as k-nearest neighbor (KNN), in [169] an incremental KNN algorithm is

proposed. The algorithm is extended to a fuzzy version in [79] . These kinds of algorithms are useful when a variable

number of neighbors are required for each point in the data set. However, lazy learning techniques are usually too slow

to cope with (fast) online demands since a new model is built from scratch locally around each new query point (in

dependency of the new query, in fact). 

It is fundamental to remark that in these incremental methods the structure of the resulting classifier (a set of neurons,

rules, clusters, support vectors, leaves, etc.) is fixed based on a prior choices. However, new data samples may not follow

the same distribution of the training data, and it is necessary to face issues such as overfitting, low generalization and drift

and shift of the density of the data stream [131] . 

Taking these considerations into account, the field of evolving intelligent classifiers started with the evolving fuzzy-rule

based classifier eClass ( evolving Classifier ), [15,16] . An important aspect of eClass is that it can cope with large amounts

of data and process streaming data in real time and in online mode. In addition, the different algorithms of the eClass

family are single-pass, recursive, and therefore, computationally light since they have low memory requirements. eClass can

evolve/develop from the new data; it has the following properties: eClass can start learning from scratch; and the number

of fuzzy rules and classes do not need to be prespecified. These numbers vary by reading and analyzing the input data along

the learning process. Thus, its structure is self-developed (evolved) over time. 

In addition, eClass classifiers were categorized considering the consequent part of the fuzzy rules that cast the classifiers.

In this sense, eClass includes different architectures and online learning methods. The family of alternative architectures

includes: eClass0 , with the classifier consequents representing class label (zero-order) and eClass1 , which uses a first-order

classifier. It is remarkable that recently, the zero-order classifier ( eClass0 ) was demonstrated to be fully unsupervised [49] . 

eClass0 [16] is an FRB classifier and its structure follows the typical construct of an FRB classifier, 

Rule i : if (x 1 is around x 1 i ) and . . . and (x n is around x i n ) then L = (L i ) (1)

where Rule i represents the i th fuzzy rule of the FRB structure, x = [ x 1 , x 2 , . . . , x n ] 
T is the vector of features, x i denotes the

prototype (existing sample) of the i th rule antecedent, and L i is the label of the class of the i th prototype. 

About the learning process of eClass , it is important to emphasize that FRB antecedent terms are formed from the data

stream around highly descriptive prototypes in the input-output space per class. In the case of eClass0 , its main difference

to a conventional FRB classifier is that eClass0 has an open structure and uses an online learning mechanism that considers

such a flexible rule-base structure. 

eClass1 [16] is an FRB classifier whose architecture regresses over the feature vector using first-order multiple-input

multiple-output evolving Takagi-Sugeno (MIMO-eTS) fuzzy systems. The structure of an eClass1 rule is 

Rule i : if (x 1 is around x 1 i ) and . . . and (x n is around x i n ) then (y i = x T �) , (2)

where Rule i represents the i th fuzzy rule of the FRB structure, x = [ x 0 , x 1 , . . . , x n ] 
T denotes the (n + 1) -dimensional vector of

features, and y i is the output. 

A main aspect in the learning process of eClass1 is the online identification of the parameters of the FRB structure. These

parameters are updated with the arrival of new data samples carrying new information using recursive density concepts. 

In [32] , a new family of evolving classifiers is presented, namely simpl_eCLass0, which is an improvement of eClass . This

family consists of two members: simpl_eCLass0 and simpl_eCLass1 (zero and first order classifiers). These classifier struc-

tures have all the advantages of the eClass family but their structure adjustment phase is simplified significantly, reducing

computational overhead. In the same way as eClass , simpl_eCLass works in online mode updating the classifier/rules. In this

case, the main differences of these two versions are the consequent part of the fuzzy rules, and their classification strategy,

which is simplified based on the simpl_eTS + approach [17] . 

A method for training single-model and multi-model fuzzy classifiers incrementally and adaptively is proposed in [128] .

This method is called FLEXFIS-Class as its core learning engine is based on several functionalities as described in the original

FLEXFIS approach [129] (including the rule evolution concept). In [128] , two variants of evolving fuzzy classification schemes

are presented: 
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• FLEXFIS-Class SM is an evolving scheme for the single-model case. It exploits a conventional zero-order fuzzy classifica-

tion model architecture with Gaussian fuzzy sets in the antecedent terms, crisp class labels in the rule consequents and

(fuzzy) confidence values for each class in each rule. 

• FLEXFIS-Class MM is based on a multi-model architecture that exploits the idea of nonlinear regression by an indicator

matrix to evolve a Takagi-Sugeno fuzzy model for each separate class (receiving a label of 1 while all other classes receive

a label of 0). To provide a final classification statement, the maximal output value from all fuzzy models is elicited: the

final class output corresponds to the maximum argument, i.e. the output is the class represented by that model that

produced the maximal output value. 

In [136] , the authors extended FLEXFIS-Class to another multi-model variant in the case of multi-class classification prob-

lems by using the all-pairs technique, then termed as EFC-AP (Evolving fuzzy classifiers with All-Pairs). For each class pair

either a binary FLEXFIS-Class SM model (EFC-AP SC) or a Takagi-Sugeno fuzzy model (by regression on {0, 1}, EFC-AP TS)

is established. For a new query point, a preference value for each class-pair is elicited (how much one class is preferred

over the other according to the output confidence), which can be stored in a preference relation matrix. This matrix can

be analyzed to produce a final classification statement. Due to the all-pairs technique, the problem of class imbalance in

stream learning (leading to deterioration in performance on under-represented classes) could be reduced. This was success-

fully evaluated when introducing new classes on the fly in a streaming context for online visual inspection systems [137] . A

significant increase in classification accuracy on new classes (under-represented after their birth) could be observed when

using EFC-AP, compared to FLEXFIS-Class SM/MM. 

In [21] , a new method for defining the antecedent part of a fuzzy rule-based classification system, called AnYa, is pro-

posed. The method removes the need to define the membership functions per variable using often artificial parametric

functions such as triangular, Gaussian etc. Instead, it strictly follows the real data distribution by using the concept of data

clouds, which can be applied to classification tasks. In addition, as it is based on vector forms, logical connectives are useless.

Finally, it uses relative data density expressed in a form of a parameter-free (Cauchy type) kernel [22] to derive the activation

level of each rule. These levels are then fuzzily weighted to produce the overall output. In this case, AnYa-Class uses a single

rule for each class since all the data of a class form a single data cloud. The number of rules is fixed, so this classifier is

incremental, but not (fully) evolving. AnYa-Class, as the eClass family, is divided in two types: zero order if the consequent

of each rule is a single class label, and first order if the consequents of the rules are linear. The concept was used in control,

[26] , to construct the Robust evolving cloud-based controller (Recco) [7] for heat-exchanger plant, and in [8] for real two-

tank plant control. This kind of structure was also used in model identification of production control [6] and for evolving

model identification for process monitoring and prediction of nonlinear systems in general [9] . Monitoring of large-scale cy-

ber attacks using evolving Cauchy possibilistic clustering is shown in [185] . A successful implementation is also reported for

evolving cloud-based system for the recognition of drivers’ actions in [184] . A comparison of approaches for identification

of many data-cloud-based evolving systems is presented in [37] . The problems of identification of cloud-based fuzzy evolv-

ing systems are studied and elaborated in [38] and a robust fuzzy adaptive law for evolving control systems is presented

in [36,183] . In [186] the unification and generalization of different evolving clustering methods based on Cauchy density is

presented. Different inner matrix norms are implemented for clustering, classification and regression from data streams. 

A different version of the eClass family, called AutoClassify, is proposed in [23] . As eClass , the AutoClass family works on

a per-sample basis, and requires only the features of that sample plus a small amount of recursively updated information

related to the density. In addition, depending on the form of the consequent part of the rules, AutoClassify includes: 

• AutoClassify0, which is a fully unsupervised method. The learning phase of AutoClassify0 is unsupervised and based on

focal points by clustering or partitioning in data clouds. The term data clouds is proposed in AnYa [21] and refers to

structures with no defined boundaries and shapes. 

• AutoClassify1 generally provides a better performance compared to its counterpart, but it is semi-supervised and takes

advantage of more parameters. AutoClassify1 can work as a MIMO type model for multi-class classification problems. The

learning phase of this classifier is based on the decomposition of the identification problem into overall system structure

design and parameter identification. However, these tasks are performed in online mode, sample per sample. 

A systematic framework for data analytics is proposed in [93] . The underlying classifier is based on the typicality and

eccentricity of the data, and is called TEDAClass ( Typically and Eccentricity based Data Analytics Classifier ). This classifier is

evolving, fully recursive, spatially-aware, non-frequentist and non-parametric. TEDAClass is based on the TEDA method [25] .

It uses local typicality and eccentricity to calculate the closeness between data and fuzzy rules. 

In [164] , an Extended Sequential Adaptive Fuzzy Inference System for Classification, called ESAFIS, is presented. It is based

on the original SAFIS approach [163] , which itself is based on the functional equivalence between a radial basis function

network and a fuzzy inference system. The SAFIS algorithm consists of two aspects: determination of the fuzzy rules and

adjustment of the premise and consequent parameters in fuzzy rules. ESAFIS extends SAFIS to classification problems and

proposes some modifications in calculating the influence of a fuzzy rule, adding fuzzy rules and especially a faster RLSE

based estimation of consequent parameters to speed up the learning process. In [168] , a new algorithm is proposed as

the combination of SAFIS and the stable gradient descent algorithm (SGD) [167] . The modified sequential adaptive fuzzy

inference system (MSAFIS) is the SAFIS with the difference that the SGD is used instead of the Kalman filter for updating

the parameters. 
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Evolving semi-supervised classification is discussed in [108] . The granulation method used to construct the antecedent

part of evolving granular predictors, often referred to as eGM ( evolving Granulation Method ), is applicable to the partition

of unbalanced numerical and granular-valued partially-supervised streaming data subject to gradual and abrupt changes. If

an unlabeled sample causes the creation of a granule, then the class of the granule remains undefined until a new labeled

sample falls within its bounds. The class label of the new sample tags the granule. Contrarily, if an unlabeled sample rests

within the bounds of an existing granule whose label is known, it borrows the granule label. Core and support parameters

of trapezoidal fuzzy sets are adapted to represent the essence of the data stream. More abstract, high-level granules are

easier to manage and interpret. 

Ensemble learning has also been used in evolving frameworks. Ensemble learning is a machine learning paradigm in

which multiple learners are trained to solve the same problem [151] and where the diversity of so-called weak learners

(e.g., simple fuzzy classifiers with low number of rules) can improve the prediction accuracy when being combined [150] —

Learn ++ was one of the first method to address ensemble learning in an incremental context, but it is not evolving. In

this sense, [88] presents a method for constructing ensembles based on individual evolving classifiers. In [89] , a scheme for

constructing ensembles which are created considering the idea behind the stacking technique [195] is addressed. In addition,

an evolving ensemble classifier, termed parsimonious ensemble (pENsemble) is proposed in [159] , where local experts (base

classifiers) are weighted according to their classification accuracy: models with low weights are discarded to make the

ensemble more compact. Base classifiers are added on the fly whenever a drift is confirmed by a drift detector based on

Hoeffding’s inequality. The base classifiers themselves are internally updated and evolved with the use of the pClass method

[154] . Recently, it has been successfully applied in an extended variant for online tool condition monitoring in [160] . TEDA,

eTS and xTS are combined as an ensemble in [175] , where diversity among their outputs is exploited in order to improve

classification accuracy. 

Since clustering can be defined as an unsupervised classification of observations into groups (clusters) according to their

similarity, it can be considered as a type of classification. This well-known unsupervised classification problem has been

solved by a variety of off-line approaches such as k-Nearest Neighbor, fuzzy c-means or density-based methods. The recur-

sive version of the latter was first reported in [58] . A Gustafson-Kessel modification to allow ellipsoidal forms of clusters is

given in [57] . Other well-known incremental/online approaches are the Self-Organizing Maps, SOM [103] – which was ex-

tended in [54] to an evolving approach – and Adaptive Resonance Theory, ART [42] . However, these approaches are not fully

unsupervised and autonomous since some problem-specific thresholds and guesses on the number of clusters in the data

set are required. In this respect, evolving methods are different since they can start learning from scratch with no need of

initial information. Moreover, the number of clusters depends on the data and should be automatically evolved on demand

and on the fly. 

Considering these aspects, the notion of autonomous clustering was pioneered with eClustering [12] , an evolving cluster-

ing approach based on the potential/density of the data samples, which is recursively calculated by using RDE [16] . In such

clustering method, the first data sample represents the first cluster center. The density of the subsequent data samples is

calculated using RDE when they arrive. A new data sample represents a new cluster center if it has higher descriptive power

than any of the other centers. In addition, the algorithm checks if the existing clusters should be removed or cluster pa-

rameters should be adapted. Similar to eClass, eClustering is one pass, non-iterative, recursive and can be used interactively.

In [17] , an improvement of eClustering , called eClustering + , which does not rely on user- or problem-specific thresholds is

proposed. It estimates the density at a data point using a Cauchy function. 

In [97] , an evolving clustering method (ECM) that employs a type of fuzzy inference, denoted as dynamic evolving neural-

fuzzy inference system (DENFIS) is proposed. ECM does not ask for the number of clusters, and cluster centers are represented

by evolved nodes. In this case, a threshold value to define the maximum distance between a data sample and cluster centers

is required. 

An evolving version of the Gustafson-Kessel (GK) algorithm [76] , called eGKL (evolving Gustafson-Kessel-like), is proposed

in [63] . eGKL provides a methodology for adaptive, step-by-step identification of clusters that are similar to GK clusters. In

this sense, eGKL estimates the number of clusters and recursively updates its parameters based on the data stream. The

algorithm is applicable to a wide range of practical time-varying issues such as real-time classification. In [182] , the idea

of evolving Gustafson-Kessel possibilistic c-means clustering (eGKPCM), as an extension of the PCM clustering algorithm, is

introduced. PCM is given in [105] . 

In [33] , an online evolving clustering approach from streaming data that extends the mean-shift clustering algorithm

is proposed. The algorithm is called Evolving Local Mean (ELM), because it uses the concept of non-parametric gradient

estimate of a density function using local mean. An ELM prototype consists of a cluster center and a distance parameter.

The approach is defined as evolving since the local mean is updated from the data stream and new clusters are added to its

structure when the density pattern changes. 

Finally, autonomous split-and-merge techniques for assuring homogeneous and compact prototype-based clusters in an

incremental, single-pass learning context are proposed in [135,138] . These are based on conventional and extended evolving

vector quantization (EVQ) concepts – the latter leading to arbitrarily rotated and shaped clusters with the use of a recursive

estimation of local inverse covariance matrices. Cluster evolution is decided based on a statistical tolerance region using the

prediction interval. 

In general, the cluster identification algorithms and approaches mentioned in this section should be flexible to changes

in the data stream. The number of clusters, cluster sizes and associated parameters should ideally be significantly chang-
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Fig. 3. Basic evolving method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing whenever demanded, while still assuring approximative convergence of the model to the (hypothetical) batch solution

(achieved when seeing all data samples at once), especially during regular modes in the stream process. Therefore, the

stability-plasticity dilemma [145] should be somehow appropriately addressed within any incremental learning method and

evolving framework. We address this issue also in more detail in Section 4.5 The next section discusses the main differences

of evolving algorithms according to the mechanisms of adding, deleting, merging, and splitting local models. 

Next, we study different evolving concepts and mechanisms which are necessary to cope with the dynamically changing

aspects of data streams properly, including adding, removing, merging and splitting of clusters and model components, as

well as initial and safety conditions. 

3. Different evolving mechanisms 

Evolving systems should change the structure of the model that describes the behavior of the data stream and be able

to adapt parameters associated to local models. The latter is generally dealt with by using some version of recursive or

weighted recursive least squares. The most challenging task, and also the basic feature of the evolving systems, is therefore

related to adding, deleting, splitting and merging of clusters, neurons, granules or clouds, in order to assure significant

flexibility in the case of changing system situations and non-stationary environments during the incremental stream learning

process. 

Basic constituting elements of evolving intelligent systems can be defined. Fundamentally, these systems consist of three

basic blocks, as shown in Fig. 3 . The main block is the central decision logic block. This block calls the remaining, adaptation

and evolving , blocks whenever necessary. In the adaptation block, the local model, rules or cluster parameters are adapted

according to incoming data samples that belong to the region of the data space already covered by the local model. By

contrary, in the evolution block, the structure of the global model is changed (e.g., it is expanded when samples are not

covered by the current model and thus embed significant novelty content). In other words, parameter adaptation is useful

to model gradual or slight changes of behavior ( concept drift ) or simply to reduce model/parameter uncertainty due to

previous data insignificance (also termed as model refinement ), while structural evolution is useful to fit new patterns or

completely different behaviors or events into the model ( concept shift ). 

The basic ideas behind evolution mechanisms are very different and suitable for different tasks. Next, these mechanisms

and corresponding algorithms are discussed in more detail. 

3.1. Adding clusters (and neurons) 

Cluster adding is the most essential mechanism of evolving systems. Usually, learning starts with no local models or

clusters; they are added to the global model on the fly in order to expand its knowledge to new regions of interest in

the feature space (reducing extrapolation likelihood for new query points). Fig. 4 shows a typical two-dimensional example

(with features X 1 and X 2 ) of cluster adding versus cluster adaptation in the case when new data samples are coming in

(rectangular markers): i.) when the new samples contain significant novelty content (e.g., lying far away from existing clus-

ters when using a distance criterion), a new cluster is added to best represent the new samples; ii.) when the new samples

are close or falling into an already existing cluster, this cluster is updated (its ellipsoidal region expanded in our example,

which could be achieved by updating the inverse covariance matrix of the cluster, for instance). 

After adding a cluster, a very important task concerns the initialization of the parameters of the new local model. An-

other key decision is related to when and in which place of the data space to consider the cluster. Such decision usually

depends on thresholds . These thresholds can be given according to (i) the output error – the error between the current

measured output and the estimated model output; (ii) some distance, similarity or density metric regarding the current

measured input data and cluster prototypes (centers generally); or (iii) the condition of ε-completeness, which is connected

to the membership degree of the current sample in the current clusters. In the case of fuzzy systems and other types of
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Fig. 4. Example of cluster adding versus cluster update based on new incoming data samples (rectangular markers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

architectures embedding local granular descriptors of partial regions with a geometric meaning, clusters are usually directly

associated with model components (e.g., with fuzzy rules). Thus, cluster adding goes hand in hand with component adding.

The criteria to add a new neuron in the case of evolving systems which are based on neural networks are quite different.

In the case of GNG, [69] , a new neuron is added after n new samples have been loaded, where n stands for a user-defined

constant. In many cases, a criterion is defined according to the Euclidean distance between the current sample and cluster

centers. This criterion is used in the case of ESOM, [53] , DENFIS and FLEXFIS. This means that such a criterion is used in an

unsupervised manner and thus no target value (e.g., a label) needed. For supervised learning, adding criteria are generally

based on the error between the measured and estimated outputs together with some logic and conditions regarding the

distance to the cluster centers. This is taken into account in the following methods: EFuNN, D-FNN, GD-FNN, SAFIS [163] ,

SCFNN. The condition for cluster addition can also be given in the form of ε-completeness , which is used in RAN, SCFNN,

SONFIN, eTS. This condition defines the minimal allowed membership value of a new sample to the current rules. 

In [80] , DFKNN considers an adding mechanism based on the Euclidean distance from a sample to the cluster centers

and on the change of the local variance caused by the sample. To add a new cluster, the distance and the variance should

be greater than a given threshold. As additional condition, the number of samples that belongs to a cluster, is monitored. If

this number is greater than a threshold, defined by the user, then a new cluster is created. 

In [50] , a dynamic data clustering algorithm is presented. Cluster addition takes into account the distance between the

current sample and the cluster centers, which should be larger than half of the minimal distance between two cluster

centers. Moreover, the membership degree of the sample in the clusters should be greater than a pre-defined threshold. 

In the case of DENFIS [96] , cluster addition is based on a generalized Euclidian distance. If the current sample is within

the radius of at least one of the clusters, then the model is not changed. Contrarily, the sum of the cluster radii and the

distance between the current sample and the center of the chosen cluster is calculated. This is done for all clusters. If the

minimal sum is larger than the double of a threshold value, then a new cluster is added; otherwise, the parameters of the

cluster are adapted. The threshold is equal to the maximum allowed cluster radius. 

The algorithms D-FNN [196] and GD-FNN [197] are similar. Cluster addition is performed according to the output error

and the distance of the current sample to the current centers of the clusters. If only the output error is greater than a

threshold, the parameters of the local models are adapted. If only the distance is larger than the threshold, the parameters of

membership functions are adapted. Otherwise, if both are above the threshold, than a new cluster is added. The thresholds

are adaptive. At the beginning, they assume higher values, which are reduced over the iterations. This means that initially a

general model is obtained, which becomes more detailed over time. This is accomplished by decreasing the thresholds. The

difference between D-FNN and GD-FNN is the way the thresholds are adapted. The method RAN [149] is also similar, but it

uses constant thresholds. 

The NeuralGas algorithm [68] monitors the accumulated error between the measured output and the output of the

system model in a prescribed time interval. If the error exceeds a predefined threshold, then a new cluster is added. A

very similar approach is performed by the NeuroFAST algorithm [191] . The algorithms GAP-RBF [86] and SAFIS [163] add

new clusters according to the output error and the distance to the active cluster. In the meantime, the improvement of the

model error is calculated in the case a new cluster would be added to the position of the current measured sample. If these

three criteria are fulfilled, namely, the output error is larger than a threshold, the minimum distance to the cluster centers

is larger than a threshold, and sufficient model improvement in relation to the reduction of the output error is observed,

then a new cluster is added. 

The criterion for cluster addition in the case of EFuNN [94,95] is based on sensitivity, which is a function of normalized

distances. The NFCN [125] , ENFM [176] , SONFIN [91] , SCFNN [126] and SOFNN [121] algorithms are based on the principle of

ε-completeness, which means that the minimal membership degree of the current sample to all clusters (rules) should not

be smaller than a predefined threshold. The SOFNN and SCFNN algorithms take into account not only the ε-completeness

criterion, but also an additional criterion based on the variation of the output error. 

In the case of eTS [10,161] , cluster addition is based on the potential of a current sample. The sample is accepted as the

center of a new cluster if the distance to the closest center exceeds a predefined threshold and the potential of the sample

is larger than the potential of the current clusters. If the distance condition is not fulfilled, the closest cluster center moves
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toward the sample. Otherwise, if the distance condition is fulfilled, but the potential of the candidate is lower than the

potential of the centers, then only the parameters of the local models are adapted. 

Granular evolving methods, IBeM [109,113] , FBeM [112,115] and eGNN [114,116] , consider a maximum expansion region

(a hyper-rectangle) around information granules. Granules and expansion regions are time-varying. They may contract and

enlarge independently for different attributes based on the data stream, the frequency of activation of granules and rules,

and on the size of the rule base (IBeM, FBeM) or neuro-fuzzy network (eGNN). If a sample does not belong to the expansion

region of the current granules, a new granule is created. In eGNN, the use of nullnorm and uninorm-based fuzzy aggregation

neurons may provide granules with different geometries [114] . 

FLEXFIS [129] and its classification versions FLEXFIS-Class SM and MM [128] add a new cluster according to the distance

between a sample and the cluster centers. The cluster is added if the smallest distance exceeds a vigilance parameter which

is normalized subject to the current input dimension in order to avoid too intense cluster growing due to curse of dimen-

sionality. GS-EFS [139] adds a new cluster (in arbitrarily rotated position) according to the Mahalanobis distance between a

sample and its nearest cluster. The statistical estimation of the so-called prediction interval by using an approximated, fast

version of the �2 -quantile serves as tolerance region around the ellipsoidal cluster contour in order to decide whether a

new (generalized) rule should be evolved or not. 

In the eFuMo algorithm [59] , the decision about adding clusters can be based on the Euclidean or Mahalanobis distance

regarding the current sample and the cluster centers. Calculations can be based on all or on particular elements of the data

and cluster vectors. 

IN PANFIS [152] , a new cluster is added whenever the model error on the new sample is high and also its significance to

the PANFIS overall output is given (both factors are multiplied). The latter is measured by the integration of the winning rule

(nearest one to the current samples) over the complete feature space, normalized by its range: in order to avoid the revisit

of past samples, this can be approximated with determinant operations on covariance matrices representing the shapes and

orientations of generalized rules. 

It is recommended to consider multiple criteria and different conditions for cluster addition. This is performed by NEU-

ROFast and eFuMo. In eFuMo, the concept of delay of evolving mechanisms is introduced. The delay is an interval in which

evolving mechanisms are not enabled. Only adaptation of centers and model parameters is conducted during such time

interval. The delay of evolving mechanisms takes place after a change in the structure of the system performed by any

evolving mechanism. The model should have a certain period to adapt on the new structure. The duration of the delay

should be defined by the user and depends on the data. Additional safety conditions are discussed next. 

3.1.1. Safety conditions 

When evolving algorithms are based on Euclidean distance there may be regions inside a hypershpere with no represen-

tative data. This is generally not true if the Mahalanobis distance is used because the distances in this case are normalized

by the variance of the attributes. This allows multiple ellipsoids to develop close to each other but oriented with different

angles. 

In real-world data streams, some issues may arise when evolving models deal with outliers. Ideally, outliers should not

cause the creation of a new cluster. Therefore, an additional safety condition is generally given, and should be tested before

adding clusters to a model. In eFuMo, this condition is based on the number of output samples that do not belong to the

current clusters. A delay is introduced into the adding mechanism, but the addition of unnecessary clusters is prevented.

The safety condition is given as: a new cluster is added if N consecutive output samples belong to the same cluster and fulfill the

necessary criteria for cluster addition. The probability of adding a cluster as a result of outliers is decreased to P ( x ) N , where

P ( x ) stands for the probability of forming a new cluster from an outlier. The number of samples N is usually chosen from

5 to 10. Similarly, FLEXFIS(-Class) and GS-EFS embed a rule-base procrastination option, where, after adding new clusters,

several samples are awaited before the cluster becomes significant and thus is considered as a new rule in the rule base. 

Some evolving methods accept the creation of clusters in a passive way. In this case, the cluster added to the model

based on an outlier will probably not be activated for a number of iterations. Deleting procedures play a key role in these

methods to keep the rule base concise and updated. 

Next, we discuss the initialization strategies in the case when a cluster/component is added. 

3.1.2. Initialization of a new cluster 

When a sample fulfills all conditions for adding a cluster/rule/component, it usually defines the new cluster center. A

second parameter to be defined is the size of the cluster. In ellipsoid-based models, the size depends on the covariance

matrix. In the literature, a number of different initialization approaches is given: the size of the new cluster depends on the

distance to the closest cluster (DENFIS [96] , D-FNN [196] ); the initial covariance matrix is fixed and given as a user defined

parameter (SCFNN [126] , SONFIN [91] ); it can also be given as the average of the covariance matrices of the existing clusters

(xTS [29] ). In ENFM [176] , the covariance matrix is equal to the covariance matrix of the closest cluster, and in FLEXFIS

[129] it is set to a small value of ε to guarantee numerical stability of the rules and fuzzy sets. In GS-EFS [139] , the inverse

covariance matrix is initialized as a fraction of the range of the input features or by a weighted average of neighboring

rules (where the weights are the support of the rules, i.e. number of data samples that formed them). In PANFIS [152] , the

covariance matrix is initialized as a diagonal matrix in a way that ε-completeness is guaranteed (similarly as in SONFIN), i.e.



I. Škrjanc, J.A. Iglesias and A. Sanchis et al. / Information Sciences 490 (2019) 344–368 355 

Fig. 5. Example of cluster fusion effect (right plot) in the case of data samples filling up the hole between originally distinct clusters (as shown in the left 

plot); the merged cluster is shown as solid ellipsoid in the right coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

achieving a minimal overlap degree of ε with any of the adjacent clusters. Initialization based on the distance to the closest

cluster is successful because it covers the gap between clusters. Gap covering was discussed, for example, in [107] . 

Parameters of local linear models should also be initialized. In [10] , the parameters are initialized as ‘zero’ in the case of

using the local fuzzy least squares algorithm (for estimating the consequent parameters in each rule separately), and as the

weighted average of the other local linear models in the case of using the global least squares algorithm (for estimating the

consequent parameters in all rules together). The weights are the membership values. In [96] , the parameters of the new

local model are equal to those of the closest local model. 

Initialization of local linear model parameters by a weighted average [10] is common. Together with the initialization of

local model parameters, covariance matrices can also be taken into account. Weights used to initialize the new local model

parameters may consider the variance of a certain parameter. When a new local model is added, covariance matrices in

recursive algorithms can be multiplied by a factor ρ = 

c 2 +1 
c 2 

, where c is the number of current clusters. This makes further

adaptations more stable. 

The next two subsections deal with two important extensions, namely cluster merging and cluster splitting in order to

assure homogenous clusters and compact model components and structures. 

3.2. Merging clusters 

Merging is necessary if clusters significantly overlap with each other due to adaptation mechanisms. This effect is called

cluster fusion and is usually caused by consecutive samples belonging to the gap in-between two or more clusters, which

is used to be disjoint at a former time instant, but latter it turns out that they are not and should be merged to eliminate

redundancy. A two-dimensional visualization example (with features X 1 and X 2 ) of this effect is shown Fig. 5 . 

Merging of clusters does not only provide a more accurate representation of the local data distributions, but also keeps

E(N)FS, in general, more compact and thus more interpretable and adaptable. 

Different mechanisms for cluster merging are given in this section. In DKFNN, the algorithm monitors the positions of

the clusters centers. If two of them approach one another, the underlying clusters should be merged. A measure of cluster

similarity, useful for merging, is given in [66] . The measure is based on the membership degree of samples in clusters

and is similar to the correlation between the past activations. Merging based on correlation among previous activations

is also given in [95] (EFuNN). In this algorithm, merging is based on the maximum cluster radius. Neighbouring clusters

that present the sum of radii less than a maximum threshold are merged. In ENFM, two clusters are merged when the

membership of the first cluster center to the second cluster is greater than a predefined threshold, and vice-versa. In SOFNN

[121] , clusters are merged when they exhibit the same centers, which is almost impossible in practice. 

The algorithm FLEXFIS + [130] calculates the intersection of the membership functions in each dimension. This is the

basis to define the index of overlapping, which is then used to judge whether whole clusters (rules) should either be merged

or not. If the index is greater than a predefined threshold, then clusters are merged. Merging itself is conducted in the

antecedents by an extended variant of recursive variance formula and in the consequents by exploiting Yager’s participatory

learning concept [199] in order to resolve possibly conflicting rules properly. GS-EFS adds a homogeneity condition among

both, antecedent and consequent spaces, to decide whether two clusters should be merged: the angles between their hyper-

planes should not be too small and their joint volume should not be too large. This assures that clusters are not merged

inappropriately when they are actually needed to handle local nonlinearities. 

The eFuMo algorithm merges clusters based on the normalized distance between their centers. The distance is calculated

based on the Mahalanobis measure. The parameters of the merged cluster are initialized by a weighted average [176] or

using a normal average, such as in [95] , while the merged covariance matrix can be defined as proposed in [123] . The

algorithm uses also the parameters of the local model similar to FLEXFIS + , but eFuMo also takes into account the prediction

of the local models. Three conditions for merging are: angle condition, correlation condition, and distance ratio condition.

Two clusters are merged if they fulfill one of these conditions. Additionally, a condition for the local model outputs is taken

into consideration. The difference between two outputs should be less than a predefined threshold, and they should have a

support set higher than a predefined value. 
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Fig. 6. Upper: cluster blow-up due to gradual drifts always updating the cluster a bit (no cluster evolution triggered); middle: showing a cluster delami- 

nation effect due to samples originally appearing as one cluster; lower: but, when new samples fall into this cluster, two heterogenous data clouds turn 

out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An instantaneous similarity measure is introduced in FBeM [112] for multidimensional trapezoidal fuzzy sets, say A 

i 1 and

A 

i 2 , as 

S(A 

i 1 , A 

i 2 ) = 1 − 1 

4 n 

n ∑ 

j=1 

(| l i 1 
j 

− l i 2 
j 
| + | λi 1 

j 
− λi 2 

j 
| + | �i 1 

j 
− �i 2 

j 
| + | L i 1 

j 
− L i 2 

j 
| ) , (3) 

where A 

i = (l i , λi , �i , L i ) is an n -dimensional trapezoid. Such measure is more discriminative than, for example, distance

between centers of neighbouring clusters, and its calculation is fast. If S(A 

i 1 , A 

i 2 ) is less than a maximum width allowed

for clusters, the underlying clusters are merged. The cluster that results from the merging operation takes into account the

bounds (convex hull) of the combined clusters to provide the highest level of data coverage. 

3.3. Splitting clusters 

The splitting of clusters is defined for a finer structuring of the data space and the model structure. Basically, an evolving

algorithm should, in the case of regression and identification problems, accept a larger number of clusters in the region

where the model output error (approximation or prediction error) is greater than the expected one or grows extraordinary.

This can happen because clusters may grow over time due to gradual drifts, cluster delamination effects or inappropriately-

set (pessimistic) cluster/rule evolution thresholds. Fig. 6 shows an example for gradual drifting patterns and delamination

effect, leading to blown-up rules. The latter is the case when evolving methods are used in new applications in a plug-and-

play manner by using parameters tuned to past tasks or problems. 

The concept of splitting is proposed in [78] and in [52] . A Chernoff measure is used in the former while a fidelity measure

is assumed in the latter. The author in [135] proposes a penalized BIC ( Bayesian information criterion ) to decide whether the

current cluster structure should be kept or whether the latest updated cluster should be split into two (the partition receiv-

ing a lower penalized BIC value is preferred). The penalization of the log-likelihood is extended with a product term, which

vanishes in case of close over-lapping clusters, thus punishing them more than clearly disjoint clusters. As the punished

BIC may not fully represent real cluster homogeneity versus cluster heterogeneity, the split approach in [138] (AutoClust)

extends this approach by applying a Gaussian mixture model estimation along each principal component direction of an

updated cluster with two Gaussians and then checking whether any two Gaussians (in each direction) are significantly dif-

ferent (according to the Welch test). If so, a heterogeneous cluster is found (i.e. a cluster that represents two disjoint data

clouds internally), and thus it should be split. The split point is estimated through the cutting point of the adjacent (but

statistically different) Gaussians. 

In NeuroFAST [191] , clusters are split according to their mean square error (MSE). The algorithm calculates the error

in each P steps and splits the cluster and the local model with the greatest error. The mechanism of splitting in eFuMo

is based on the relative estimation error, which is accumulated in a certain time interval. The error is calculated for each

sample that falls in one of the existing clusters. The initialization of the resulting clusters is based on the eigenvectors of

the cluster covariance matrix, as in [81] and in [187] where nonlinear system identification by evolving Gustafson-Kessel

fuzzy clustering and supervised local model network learning for a drug absorption spectra process is presented. 
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An innovative and efficient (fast) incremental rule splitting procedure in the context of generalized evolving fuzzy sys-

tems (extending GS-EFS approach [139] ) is presented in [143] for the purpose of splitting blown-up rules with high local

estimation errors over the past iterations. In this sense, it can autonomously compensate those drifts, which can not be

automatically detected (e.g., slowly gradual ones), see Section 4.2 . 

Finally, in the next subsection, we discuss how the removal of superfluous clusters/component, which typically became

superfluous over time, but earlier were important, is addressed in the current evolving modeling approaches. 

3.4. Removing clusters 

Mechanisms for removing clusters are convenient to delete old or inactive local models, which are no longer valid. These

mechanisms are of utmost importance in classification and pattern recognition to assure faster computation speed in adapta-

tion and more compact rule bases and networks. In general, it happens that a cluster is created in a part of the input-output

space where there are just a few representative samples. This is justified by errors in measurements or due to a change of

the system behavior so that a cluster is not useful after a number of iterations. These clusters can be removed from the

model, because they do not help in the description of the data. Nonetheless, care should be taken with seasonal behaviors

since a cluster may be reactivated latter. Moreover, in anomaly detection problems, unusual and idle clusters may be more

important than those highly operative clusters, and therefore should not be removed. 

The mechanisms to remove clusters are mainly based on the following principles: the age of the rule (xTS, GNG, ESOM),

the size of the support set of the cluster ( + eTS), the contribution of the rule to the output error (SAFIS [163] , GAP-RBF, D-

FNN, GD-FNN), the combination of the age and the total number of activations (EFuNN, IBeM, FBeM, eGNN), or the minimal

allowed distance between the cluster centers (ENFM). In [50] , a cluster is removed from the model if no sample in a certain

time interval rests within its bounds. The time interval is defined by the user. A drawback of this approach concerns long

steady-state regimes. In this case, important clusters can be removed. 

In D-FNN [196] , GD-FNN [197] , GAP-RBF [86] , SAFIS [163] and SOFNN [121] , cluster removing depends on the model

output error. In D-FNN, an error reduction ratio is introduced to define the contribution of a certain local model to the

overall output error. If the local model does not contribute significantly to the error reduction, the cluster is removed. A

similar approach is addressed in GD-FNN [197] . In addition to an error reduction ratio , a sensitivity index is introduced. The

clusters are removed according to these two values. In SAFIS [163] , an estimation of the change in the output error is given

when the cluster is removed from the model structure. If this value is higher than a threshold, the cluster is removed. SOFNN

[121] introduces a procedure to remove clusters according to the concept of the optimal brain surgeon approach [83,122] . This

approach is based on the sensitivity of the model output error according to the change of local model parameters. If the

sensitivity is greater than a user defined threshold, the cluster is removed. Similar mechanisms were introduced in [196] and

[197] . 

In [68] (Neural Gas), clusters are removed if they were generated k − a max iterations before, where k stands for the

current iteration, and a max is a user-defined threshold. 

In [29] (xTS), clusters are removed based on their support set and age. The support set is defined as the number of

samples that belongs to a cluster. A sample always belongs to the closest cluster. The age of a cluster is defined as the

ratio between the accumulated time of samples and the current time. Clusters are removed according to the ratio between

the support set and the overall number of samples and the age of clusters. The same condition is also used in + eTS [19] ,

where the condition of utility is also used. The utility is the ratio between the number of cluster activations and the time

the cluster was added to the model. The cluster is removed when these values differ from the average value, where the

confidence band is defined by the standard deviation. 

DFKNN [80] removes clusters if their support sets are smaller than a minimum value. The minimal support set is a user-

defined parameter. A second condition is based on a time interval in which it is required that at least one new sample is

within the cluster, otherwise the cluster is removed. 

In EFuNN [94,95] , a cluster is removed due to the age and the sum of cluster activations. The age is defined as the num-

ber of samples from the creation of the cluster to the current iteration. If the age of the cluster is higher than a predefined

threshold and its number of activations is less than the age of the cluster multiplied by a user defined constant in [0, 1],

the cluster is removed. The eGNN approach in [114,116] is closely related. 

In PANFIS [152] , clusters are removed when they are inconsequential in terms of contributing to past outputs and pos-

sible future estimations. This can be reduced to a compact closed analytical form through u -fold numerical integration for

any arbitrary probability density functions p ( x ) of the input data manifold. 

In eFuMo [59] , the removing mechanism is a modification of that used in + eTS. It is based on the rate between the

support set N p i , and the age of the cluster, a i . The age of a cluster is defined as a i = k − k i , where k stands for the current

time instant, and k i is the number of samples from the time instant when the i − th cluster was created. The minimal

condition for the existence of the cluster is 

if N trh ≥ N p i (a trh ) , then remove cluster , (4)

where N trh stands for the minimal number of samples in the cluster (the support set), a trh is the threshold for the age of

the cluster, and N p i (a trh ) is the value of the support set when it reaches the age threshold a trh . All thresholds are defined

by the user, but they have some commonly used default values. The condition to remove a cluster is given in the form of



358 I. Škrjanc, J.A. Iglesias and A. Sanchis et al. / Information Sciences 490 (2019) 344–368 

Fig. 7. Different representations of a one-dimensional approximation problem by conventional (axis-parallel, plotted with dotted/dashed ellipsoids) and a 

generalized (arbitrarily rotated) rule (plotted with a solid ellipsoid). Notice the more compact (and even more accurate) representation of the left-most 

upwards trend by the generalized rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the ratio between the support set and the age of the cluster as 

N p i 

a i 
> εNa 

1 

c 

c ∑ 

i =1 

N p i 

a i 
, (5) 

where εNa stands for a user-defined constant, which is less than one, and c is the number of clusters. All clusters that fulfill

this condition remain in the model structure, whereas the others are removed. 

In [109] , the concept of half-life of a cluster or granule is introduced. Let 

�i = 2 

(−ψ(h −h i a )) (6) 

be the activity factor associated to a cluster. The constant ψ is a decay rate, h the current time step, and h i a the last time

step that the cluster was activated. Factor �i decreases exponentially when h increases. The half-life of a cluster is the time

spent to reduce the factor �i by its half, that is, 1/ ψ . 1/ ψ is a value useful to remove inactive clusters. Large values of ψ 

express lower tolerance to inactivity and higher privilege of more compact structures. Small values of ψ add robustness and

prevent catastrophic forgetting. ψ is set in ]0, 1[ to keep model evolution active. 

Although adding, removing, merging and splitting of clusters already assure some kind of homogeneity of clusters and

model components and mostly more compact representations of data clouds, there are several key issues left for assuring i.)

more elegant model architectures for higher predictive performance, ii.) more flexibility, iii.) higher robustness and iv.) han-

dling of uncertainty v.) higher stability and better convergence, and vi.) higher computational speed and practical useability

for model updates in order to greatly increase applicability of evolving (neuro-)fuzzy systems in real-world application sce-

narios. These will be handled in the next section, where each subsection addresses a particular issue as mentioned above in

the same order (i.) to vi.)). 

4. Advanced aspects and methodologies 

4.1. Advanced architectures for increased performance and representation 

Almost all of the aforementioned E(N)FS approaches employ the classical fuzzy model architecture regarding the an-

tecedent space, which employs AND-connections of fuzzy sets in the single rules with the usage of a t-norm [102] . A rule

is defined as follows 

Rule i : IF x 1 is μi 1 AND . . . AND x p is μip THEN y i = f i (x ) . (7) 

with p the dimensionality of the feature space, μi 1 , . . . , μip linguistic terms (such as, e.g., high, intense, weak), formally

represented by fuzzy sets [200] , and f i ( x ) the consequent part, which can be a real value, a function or a class label. Through

the AND-connections, rule activation levels can be obtained, which are typically normalized in the inference process and

aggregated over all rules (through a t-conorm) to achieve a final model output — which is either a fuzzy set or a crisp value

depending on whether a Mamdani-type or a Takagi-Sugeno type fuzzy system is applied. 

The AND-connections in (7) , when established through t-norms in order to achieve a rule activation level, induce axis-

parallel rules. This prevents the possibility to model local correlations between input dimensions accurately and compactly.

Either more rules are needed for an accurate representation of local data clouds or inaccurate representations of these are

obtained. Fig. 7 gives a two dimensional example of this issue, with input variable X and output variable Y. The authors in

[118] proposed the use of generalized versions of fuzzy rules in an evolving context. These are defined as 

Rule i : IF x IS (about) μi THEN y i = f i (x ) . (8) 
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μi denotes a high-dimensional kernel function, which, in accordance to the basis function networks spirit, is given by

the multivariate Gaussian distribution 

μi (x ) = exp 

(
−1 

2 

(x − c i ) 
T 	−1 

i 
(x − c i ) 

)
, (9)

with c i the center and 	−1 
i 

the inverse covariance matrix of the i -th rule, allowing an arbitrary rotation and spread of

the rule. This generalized form of fuzzy rules has been also successfully used in GS-EFS [139] and PANFIS [152] , where

specific projection concepts have been developed in order to gain an equivalent axis-parallel rule base with conventional

fuzzy sets, to maintain linguistic interpretability [200] . In [137] , generalized rules have been successfully integrated in the

all-pairs technique (EFC-AP, see Section 2.2 ) for a better representation of rules in multi-class classification problems. In [5] ,

generalized rules have been used in evolving TS neuro-fuzzy classifiers employing classical single model architecture. 

An extension of classical EFS architecture has been proposed in [104] , which defines the consequent of rules as a

weighted combination of mercer kernels. Therefore, LS-SVM can be applied in order to estimate the weights as support

vectors in each local region, which may provide a better accuracy especially when there is an intrinsic local nonlinearity in

the data. 

In order to address uncertainty contained in data streams (or even in expert knowledge) on a second level appearance,

e.g., fuzzy data samples which are influenced by noise, [92] proposed an evolving type-2 fuzzy system approach, termed as

SEIT2-FNN. Type-2 fuzzy systems were invented by Lotfi Zadeh in 1975 [201] for the purpose of modeling the uncertainty

in the membership functions of usual (type-1) fuzzy sets. Through the so-called footprint of uncertainty (FOU) [124] , they

are able to model such occurrences of second level uncertain fuzzy data. SEIT2-FNN uses classical interval-valued fuzzy

sets, where the firing strength of type-2 fuzzy rules serves as motivation for rule and fuzzy set evolution. Thereby, this

approach assures ε-completeness with ε being the threshold used for the minimal firing strength. It also embeds a fuzzy

set reduction method for strongly overlapping sets. It applies a rule-ordered Kalman filter for consequent learning and an

incremental gradient descent algorithm for antecedent learning. 

Latter, other techniques for evolving type-2 fuzzy systems were suggested in [190] (eT2FIS), [178] (McIT2FIS),

[157] (eT2RFNN) and in [156] (ST2Class) (for classification), which significantly expands the original approach in [92] with

several concepts such as active learning for sample selection policies, curse of dimensionality reduction by feature weighting,

and handling of cyclic drifts. 

A new variant of neuro-fuzzy architecture has been proposed in [174] , which has been termed evolving neofuzzy neu-

ronal network (ENFN). ENFN splits the multi-dimensional input space to single uni-variate rules, which therefore reduces

error-proneness of the model due to curse of dimensionality effects on structural basis in a natural way (see Section 4.3 ).

Even more important, the inference process and the learning is completely independent from the number of inputs; the

former just applies the sum of functional activations of each single rule (thus, over all inputs) to a combined output. The

functional activation of a single rule is given by a weighted average of activations of two fuzzy sets more adjacent to the

current query sample, where the weights are incrementally learned from the data. New membership functions are created

whenever the local error exceeds the mean over the global error plus its standard deviation. ENFN also removes unnecessary

membership functions due to inactiveness [131] . 

Multi-model classifiers, as discussed in Section 2.2 , can also be seen as advanced architectures, achieving less class im-

balance due to class-decomposition and using advanced techniques (from preference relation theory) for combining the

outputs of evolving models as weak classifiers. 

Furthermore, recently evolving deep (fuzzy) rule-based classifiers have been proposed in [27] . They are based on the

autonomous multi-model systems architecture (ALMMo) [28] and avoid the limitations of current deep learning neural net-

works structures, which: i) are usually completely un-interpretable (apart from some hierarchical feature representations

with different zooms in the case of context-based image data); and ii) require very high computational efforts in batch

off-line training cycles. 

4.2. Drift handling for increased flexibility 

In predictive analytics and machine learning, concept drift means that the statistical properties of either the input or

target variables change over time in unforeseen ways. In particular, drifts either denote changes in the underlying data

distribution (input space drift), in the underlying relationship between model inputs and targets (joint drift) or in the prior

probabilities of the target class resp. in the distribution of the target vector (target concept drift) — see [100] for a recent

comprehensive survey discussing several variants of drifts. Drifts can happen because the system behavior, environmental

conditions or process states dynamically change during the online learning process, which makes the (input/output) relations

and dependencies contained in and modeled from the old data samples — more and more obsolete as time passes. 

As already pointed out at the beginning of Section 3 , evolving modeling techniques are an adequate methodology to

handle drifts. When the drift is intense enough (abrupt drifts, shifts), new model components (rules) are typically evolved

automatically by the evolving concepts discussed above. Such automatic handling within the learning procedure is also

referred as passive drift handling [100] , which abandons the necessity of detecting drifts explicitly. On the other hand, drifts

may also be of lower intensity or of gradual nature [71] , which typically deteriorates the local rules and hence overall

performance [81] . 
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The pioneering study to handle such drift cases is [131] . The basic idea concerns increasing the flexibility of the pa-

rameter updates through forgetting concepts. Forgetting is achieved through exponentially outweighing older samples over 

time with the use of a factor, whose value can be adapted according to the intensity of a drift, measured with the use of

the concept of rule ages [19] . Forgetting of both, antecedent and consequent parameters in EFS was performed in [131] for

achieving increased flexibility (of eTS + and FLEXFIS) and thus significantly increased performance on several real-world

(drifting) data sets. Many other EF(N)S methods also include the idea of forgetting older samples, but, typically, solely in the

consequent parameters when being updated through recursive (fuzzily) weighted least squares (RFWLS) [10] (an exception

is the eFuMo approach [59,202] , which also performs forgetting in the antecedent space). The RFWLS technique proposed

in [10] is fundamental in many E(N)FS methods that rely on the update of linear consequent parameters (see [140] ). 

Handling of local drifts , which are drifts that may appear with different intensities in different parts of the feature space

(thus affecting different rules with varying intensity) is considered in [173] . The idea of this approach is that different

forgetting factors are used for different rules instead of a global factor. This steers the local level of flexibility of the model.

Local forgetting factors are adapted according to the local drift intensity (elicited by a modified variant of the Page-Hinkley

test [146] ) and the contribution of the rules in previous model errors. 

Another form of drift is the cyclic drift , where changes in the (input/target) data distribution may happen at a certain

point of time, but, latter, older distributions are revisited. ENFS approaches to deal with such drift cases were addressed in

[156,157] using type-2 recurrent (neuro-)fuzzy systems, termed as eT2RFNN. The idea is to prevent re-learning of older local

distributions from scratch and thus to increase the early significance of the rules. 

Whenever a drift cannot be explicitly detected nor it implicitly triggers the evolution of a new rule/neuron, a posteriori

drift compensation is a promising option in order to (back-)improve the accuracy of the rules. This can be achieved through

incremental rule splitting [143] . ‘Blown-up’ rules with high local errors and high volumes are split into two smaller ones

along the main principal component axis (with the highest eigenvalue). 

4.3. Curse of dimensionality and over-fitting avoidance 

High dimensionality of the data stream mining and modeling problem becomes apparent whenever a larger variety of

features and/or system variables are recorded, e.g., in multi-sensor networks, which characterize the dependencies and in-

terrelations contained in the system/problem to be modeled. Depending on the ratio between the number of samples (seen

so far) and the number of input dimensions, the curse of dimensionality may become apparent, which usually causes signif-

icant over-fitting effects [171] and thus affects the whole performance of the model. This is especially the case for models

including localization components (granules) as is the case of E(N)FS (in terms of rules/neuron) [147,148] , because in high-

dimensional spaces, one cannot talk about locality any longer (on which these types of models rely) as all samples are

moving to the edges of the joint feature space — see the analysis in Chapter 1 in [84] . 

Therefore, the reduction of the dimensionality is highly desired. In a data-stream modeling context, the goal is ambi-

tious and much more sophisticated than in batch learning, because, as in case of changing/drifting data distributions, the

importance of features for explaining the target may also change over time. This may be reflected in the ranks or weights

of the features. A first study on online dimension reduction in a data stream context is proposed in [19] (eTS + ), where the

contribution of the features in the consequents of the rules is measured in terms of their gradients in the hyper-planes:

those features whose contribution over all rules is negligible can be discarded. Thus, this approach performs a crisp feature

selection, but does not respect the possibility that some features may become important again at a later stage, thus should

be also reactivated in the model. The same consideration holds to the approach in [153] (GENEFIS), which extends the ap-

proach in [19] by also integrating the contribution of the features in the antecedent space (regarding their significance in

the rules premise parts). In [4] , online crisp feature selection was extended to a local variant, where for each rule a separate

feature (importance) list was incrementally updated. This was useful to achieve more flexibility due to local feature selec-

tion characteristics. Features become differently important in different parts of the feature space. A new design of the fuzzy

inference model for predicting new samples was required and a solution presented. 

To overcome a crisp selection and to offer feature reactivation, the approach in [133] proposes the incremental learning

of feature weights ∈ [0, 1], where a weight close to 1 denotes that the feature is important and a weight close to 0 that it

is unimportant. By updating the features weights with single samples (achieved through an incremental version of Dy and

Brodley’s separability criterion [60] ), slight changes in the weights are achieved over time. They prevent an abrupt inclusion

or exclusion of features. Therefore, a feature is able to become reactivated automatically through weight updating, because

the model is always learnt on the same whole feature space (thus no input structure changes in the model are needed,

which requires time-intensive re-training phases). Curse of dimensionality reduction is then achieved i) by integrating the

weights in the incremental learning procedure to down-weigh the contributions of unimportant features in rule evolution

criteria and parameter updates, ii) by integrating the weights in the inference process when producing predictions on new

samples to down-weigh the contributions of unimportant features to the final model output, and iii) when showing the

learnt model to the experts/operators (by simply discarding features with low weights in the antecedents and consequent

parts of the rules). The approach in [133] handles classification problems and designs the incremental feature weighting

method for evolving fuzzy classifiers using single-model and all-pairs architectures (see Section 2.2 ). In [139] , the feature

weighting concepts have been adopted to the regression case where a re-scaled Mahalanobis distance measure is developed

to integrate weights in consistent and monotonic fashion (i.e., that lower weights in fact always induce lower distances). 
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Another possibility for a smooth input structure change is proposed in [144] for regression problems with the use of

partial least squares (PLS). PLS performs a transformation of the input space into latent variables (LVs) by maximizing the

covariance structure between inputs and the target [77] . The coordinate axes are turned into a position (achieving latent

variables as weighted linear combination of the original ones) that allows to better explain the complexity of the model-

ing problem. Typically, a lower number of LVs is needed to achieve an accurate regression. Scores on the lower number

of LVs (projected samples) are used as input in the evolving models. LVs are updated incrementally with new incoming

samples based on the concept of Krylov sequences in combination with Gram-Schmidt orthogonalization. Previous works

in [45,62,98] also perform an incremental update of the LV space for evolving models, but using unsupervised principal

component analysis (PCA) [90] . 

4.4. Uncertainty and reliability 

Uncertainty arises during modeling whenever i) either data is affected significantly by noise or is not dense enough

(statistically insignificant), especially at the start of the learning process; and ii) the input by humans (in the form of fuzzy

rules) is vague due to limited expertise level or forms of cognitive impairments, e.g., distraction, fatigue, boredom, tiredness.

Uncertainty is also an important aspect especially during the inference process when predicting and/or classifying new

samples in order to indicate how reliable the model and its predictions are. For instance, in a classification system, the

certainty of the predictions may support/influence the users/operators in a final decision. 

The pioneering approach for achieving uncertainty in evolving fuzzy modeling for regression problems was proposed in

[180] . The approach is deduced from statistical noise and quantile estimation theory. The idea is to find a lower and an

upper fuzzy function for representing a confidence interval, i.e., 

f (x ∗k ) ≤ f (x ∗k ) ≤ f (x ∗k ) ∀ k ∈ { 1 , . . . , N} , (10)

with N the number of data samples seen so far. The main requirement is to define the band to be as narrow as possible

and to contain a certain percentage of the data. This is based on the calculation of the expected covariance of the residual

between the model output and new data in local regions as modeled by a linear hyper-plane. The following formulas for

the local error ( j -th rule) were obtained in [180] after deductions and reformulations, 

f 
j 
(x ∗k ) = 
 j (x ∗k ) l j (x ∗k ) ± t α, 	(N) −deg ̂  σ

√ 

(x ∗
k 

 j (x ∗

k 
)) T P j (
 j (x ∗

k 
) x ∗

k 
) , (11)

where t α, 	(N) −deg stands for the percentile of the t -distribution for 100(1 − 2 α) percentage confidence interval (default α =
0 . 025 ) with 	(N) − deg degrees of freedom, and P j denotes the inverse Hessian matrix. deg denotes the degrees of freedom

in a local model. The symbol ˆ σ is the variance of model errors and the first term denotes the prediction of the j th local

rule. The sum over all f j ’s before the ± symbol refers to the conventional TS fuzzy model output, with 
 j (.) the normalized

membership degree and l j the consequent function of the j -th rule. The term after ± provides the output uncertainty for

the current query sample x ∗
k 
. 

Another approach to address uncertainty in model outputs is proposed in [112,113] , where fuzzy rule consequents are

represented by two terms, a linguistic – containing a fuzzy set (typically of trapezoidal nature) – and a functional – as in

the case of TS fuzzy systems. The linguistic term offers a direct fuzzy output, which, according to the widths of the learned

fuzzy sets, may reflect more or less uncertainty in the active rules (i.e., those rules which have non-zero or at least ε
membership degree). A granular prediction is given by the convex hull of those sets which belong to active rules. The width

of the convex hull can be interpreted as confidence intervals and given as final model output uncertainty. Evolving granular

methods were successfully applied to financial time-series forecasting [110] , Parkinson’s telemonitoring [114] , control of

chaotic systems [115] , rainfall prediction [113] and autonomous robot navigation [111] . In particular, evolving control design

and closed-loop Lyapunov stability using an evolving granular model and evolving fuzzy controller in the loop are achieved

in [115] . 

Uncertainty in classification problems using evolving fuzzy classifiers is addressed in [134] , see subsequent section. The

confidence in predicted class labels is given by a combination of: i) the closeness of the sample to the decision boundary

(the closer, the more ambiguous the final classification statement); ii) class overlap degrees (the more overlap, the more

ambiguous the final class), and iii) the novelty content calculated through the concept of ignorance (the higher the novelty

is, the higher the unreliability is in the final class). A confidence vector is delivered in addition to the class label, representing

the confidences in all classes. These concepts are also applied for all-pairs classification: i) by integrating confidence levels of

pair-wise classifiers in a preference relation matrix, see Section 2.2 ); and ii) calculating the difference in certainty between

the most and second most supported class. It is interesting to notice that novelty content is also implicitly handled in the

error bars in [180] (see Eq. (11) ) as for samples lying in extrapolation regions, the statistically motivated error bars are wider.

Apart from model uncertainty, parameter uncertainty can be an important aspect when deciding whether the model is

stable and robust. Especially in the cases of insufficient or poorly distributed data, parameter uncertainty typically increases.

Parameter uncertainty in EFS has been represented in [142,181] in terms of the use of the Fisher information matrix [65] ,

with the help of some key measures extracted from it. In [181] , parameter uncertainty is used for guiding the design of

experiments process in an online incremental manner. In [142] , it is used for guiding online active sample selection. 
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4.5. Stability and convergence 

Stability of the learning algorithms and the resulting models is an important issue (as one part of the stability-plasticity

dilemma) in order to be able to guarantee accurate and robust model predictions during online execution based on new

incoming data stream samples. For instance, there should not be any predictions of target values which are widely out of

the target’s range and thus denote an unrealistic state, which may harm the system when it is internally further processed.

An issue which is closely related to the stability of models and their predictions is the convergence of the model pa-

rameters to a kind of optimality in the objective function sense, e.g., often in the least squares (LS) sense (especially, when

optimizing consequent parameters, least squares is the most prominent choice, see above). When using the recursive (fuzzily

weighted) least squares approach, as being done by many of the current techniques, convergence to optimality is guaranteed

as long as there is no structural change [127] , i.e. no neurons or rules are evolved and/or moved. FLEXFIS takes care of this

issue and can achieve sub-optimality in the LS sense subject to a constant due to a decreasing learning gain in the cluster

partitions. 

Another and an even more direct way to guarantee stability is to show convergence of the model error itself, mostly to

provide an upper bound on the (development of the) model error over time. This could be accomplished i.) in the PANFIS

approach by the usage of an extended recursive LS method, which integrates a binary multiplication factor in the inverse

Hessian matrix update which is set to 1 when the approximation error is bigger than the system error, and ii.) in SOFMLS by

applying a modified least squares algorithm to train both, parameters and structures with the support of linearization and

Lyapunov functions. It is remarkable that in this approach the evolution or pruning of rules does not harm the convergence

of the parameters, as these only change the dimension of the inverse Hessian and the weight matrices. Based on SOFMLS

approach, the bound on the identification error could be made even smaller in [166] with the usage of an own designed

dead-zone recursive least square algorithm. SEIT2FNN employs a heuristic-based approach by resetting the inverse Hessian

matrix to q ∗I with I the identity matrix after several update iterations of the consequent parameters. This resetting operation

keeps the inverse Hessian matrix bounded and helps to avoid divergence of parameters. 

In [115] , an evolving controller approach was designed based on neuro-fuzzy model architecture, and by proving a sta-

bility theorem using bounded inputs from linear matrix inequalities and parallel distributed computing concepts. This guar-

antees robust parameter solutions becoming convergent over time and omitting severe disturbances in control actions. 

4.6. Online active learning and design of experiments 

Most of the aforementioned ENFS methods require supervised samples in order to guide the incremental and evolving

learning mechanisms into the right direction, and to maintain their predictive performance. This is especially true for the

recursive update of consequent parameters and input/output product-space clustering. Alternatively, predictions may be used 

by the update mechanisms to reinforce the model. However, erroneous and imprecise predictions may spread, sum up over

time and deteriorate model performance [170] . 

The problem in today’s industrial systems with increasing complexity is that target values may be costly or even im-

possible to obtain and measure. For instance, in decision support and classification systems, ground truth labels of samples

(from a training set, historic data base) have to be gathered by experts or operators to establish reliable and accurate clas-

sifiers, which typically require time-intensive annotation and labeling cycles [30,141] . Within a data stream mining process,

this problem becomes even more apparent as experts have to provide a ground truth feedback quickly to meet real-time

demands. 

Therefore, it is important to decrease the number of samples for model update using sample selection techniques: anno-

tation feedbacks or measurements for only those samples are required, which are expected to maintain or increase accuracy.

This task can be addressed by active learning [172] , a technique where the learner itself has control over which samples are

used to update the models [48] . However, conventional active learning approaches operate fully in batch mode by iterating

multiple times over a data base. 

To select the most appropriate samples from data streams, single-pass active learning (SP-AL) for evolving fuzzy classi-

fiers has been proposed in [134] . It relies on the concepts of conflict and ignorance [87] . The former addresses the degree

of uncertainty in the classifier decision in terms of the class overlaping degree considering the local region where a sam-

ple falls within and in terms of the closeness of the sample to the decision boundary. The latter addresses the degree of

novelty in the sample. A variant of SP-AL is given in [178] [177] , where a meta-cognitive evolving scheme that relies on

the concepts of what-to-learn, when-to-learn and how-to-learn is proposed. The what-to-learn aspect is handled by a sample

deletion strategy, i.e., a sample is not used for model updates when the knowledge in the sample is similar to that of the

model. Meta-cognitive learning has been further extended in [158] to regression problems (with the use of a fuzzy neural

network architecture) and in [155] with the integration of a budget-based selection strategy. Such a budget-based learn-

ing was demonstrated to be of great practical usability as it explicitly constrains sample selection to a maximal allowed

percentage. 

In case of regression problems, permanent measurements of the targets can also be costly, e.g. in chemical or manufac-

turing systems that require manual checking of product quality. Therefore, online active learning for regression has been

proposed in [142] for evolving generalized fuzzy systems (see Section 4.1 ) using GS-EFS, which relies on: i) the novelty of
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Table 1 

List of abbreviations and meanings. 

Abbreviation Meaning 

GNG Growing Neural Gas 

ESOM Evolve Self-organizing Maps 

DENFIS Dynamic Evolving Neural-Fuzzy Inference System 

FLEXFIS Flexible Fuzzy Inference Systems 

GS-EFS Generalized Smart Evolving Fuzzy Systems 

EFuNN Evolving Fuzzy Neural Network 

D-FNN Dynamic Fuzzy Neural Network 

GD-FNN Genetic Dynamic Fuzzy Neural Network 

SAFIS Sequential Adaptive Fuzzy Inference System 

SCFNN Self-Constructing Fuzzy Neural Network 

RAN Resource Allocating Network 

GCS Growing Cell Structure 

SONFIN Self Constructing Neural Fuzzy Inference Network 

eTS Evolving Takagi-Sugeno 

DFKNN Dynamic Fuzzy K-Nearest Neighbors 

NeuroFAST Neuro Function Activity Structure and Technology 

GAP-RBF Growing and Pruning Radial Basis Function 

NFCN Neural Fuzzy Control Network 

ENFM Evolving Neuro-Fuzzy Model 

SOFNN Self Organizing Fuzzy Neural Network 

SOFMLS Online Self-Organizing Fuzzy Modified Least-Squares Network 

IBeM Interval-Based Evolving Modeling 

FBeM Fuzzy set Based Evolving Modeling 

eGNN Evolving Granular Neural Networks 

eFuMO Evolving Fuzzy Model 

RDE Recursive Density Estimation 

GANFIS Generalized Adaptive Neuro-Fuzzy Inference Systems 

NFCN Neural Fuzzy Control Network 

PANFIS Parsimonious Network based on Fuzzy Inference System 

RIVMcSFNN Recurrent Interval-Valued Metacognitive Scaffolding Fuzzy Neural Network 

eT2RFNN Evolving Type-2 Recurrent Fuzzy Neural Network 

SEIT2-FNN Self-evolving Interval Type-2 Fuzzy Neural Network 

ENFN Evolving Neo-Fuzzy Neural Network 

RBF Radial Basis Function models 

ANFIS Adaptive Network-based Fuzzy Inference System 

ESOM Evolving Self-Organizing Map 

ID3 Iterative Dichotomizer 3 

ID4 Iterative Dichotomizer 4 

ID5R Incremental Decision Tree 

LaSVM Online Support Vector Machine 

AnYa Angelov and Yager system 

TEDAClass Typically and Eccentricity based Data Analytics Classifier 

TEDA Typically and Eccentricity based Data Analytics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a sample (ignorance); ii) the predicted output uncertainty measured in terms of local errors (see Section 4.4 ); and iii) the

reduction of parameter uncertainty measured by the change in the E-optimality of the Fisher information matrix [65] . 

In summary, it is not only a matter of deciding if targets should be measured/labeled for available samples, but which

samples in the input space should be gathered. Should the model expand its knowledge or increase significance of its

parameters? Techniques from the field of design of experiments (DoE) [64,72] has been proposed. The pioneering online

method for E(N)FS has been proposed in [181] . It relies on a combination of pseudo-Monte Carlo sampling algorithm (PM-

CSA) [82] and max-min optimization criterion based on uniformly generated samples that satisfy a membership degree

criterion for the worst local model. 

Finally, in the next section, future directions will be provided which we see as essential for making evolving (neuro-

)fuzzy systems applicable to a broader field of applications, especially for Big data and incomplete samples challenges, for

making them even more robust and convergent as well as for reducing computational demands further. 

5. Future directions 

A variety of methods has been proposed over the last 15 years to guide the development and incremental adaptation

of rule-based and neuro-fuzzy models from data streams. Interesting and persuasive practical solutions have been achieved.

Nonetheless, propositions, lemmas, theorems and assurance that certain conditions will be fulfilled are still lacking in large

parts (with a few exceptions — see Section 4.5 ) in the field of evolving clustering and evolving neuro-fuzzy and rule-based

modeling from data streams. For instance, necessary and sufficient conditions to guarantee short term adaptation and long

term survivability are still to be found. This is a major challenge because it will require the formalization of concept shift
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Table 2 

List of abbreviations and meanings (continuation). 

Abbreviation Meaning 

EFC-AP Evolving Fuzzy Classifier using All-Pairs Technique 

ALMMo Autonomous Multi-Model Systems Architecture 

pClass Parsimonious Classifier 

pEnsemble Parsimonious Ensemble 

McIT2FIS Meta-cognitive Interval Type-2 Neuro-fuzzy Inference System 

MSAFIS Modified Sequential Adaptive Fuzzy Inference System 

eGM Evolving Granulation Method 

SOM Self-Organizing Maps 

ART Adaptive Resonance Theory 

ECM Evolving Clustering Method 

GK Gustafson-Kessel clustering 

eGKL Evolving Gustafson-Kessel Like 

eGKPCM Evolving Gustafson-Kessel Possibilistic C-Means clustering 

ELM Evolving Local Mean 

ARTMAP Adaptive Resonance Theory 

BIC Bayesian Information Criterion 

MSE Mean Square Error 

GRBF Generalized Radial Basis Function 

EBF Ellipsoidal Basis Function 

SVM Support Vector Machine 

KNN K-Nearest Neighbor 

eClass Evolving Classifier 

FRB Fuzzy Rule Based 

MIMO Multi-Input Multi-Output 

SGD Stable Gradient Descent Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and concept drift, and to show how they affect searches in a hypothesis space from the point of view of simultaneous

parameter estimation and structural adaptation. Systematic and formal approaches to deal with the stability-plasticity trade-

off to ensure short-term adaptation and long term survivability are still lacking. 

Missing data are common in real-world applications. They arise due to incomplete observations, transfer problems, mal-

function of sensors, or incomplete information obtained from experts or on public surveys. The missing data issue is still

an open topic in non-stationary data stream environments, in spite of having been extensively investigated in off-line set-

tings. Particular sequences of missing data may cause instability of Lyapunov-stable closed-loop control systems and a loss

of memory in evolving fuzzy and neuro-fuzzy modeling. 

Further issues that remain unsatisfactorily addressed in the literature concerns characterization, design of experimental

setups, and construction of workflows to guide development, performance evaluation, testing, validation, and comparison of

algorithms in non-stationary environments. The evolution of rough-set models, Dempster-Shafer models and also aggrega-

tion functions are also important topics to expand the current scope of the area. T and S-norms, Uni and null-norms, and

averaging functions are generally chosen a priori and kept fixed during model evolution. Approaches to switch aggregation

operators based on properties of the data and to adapt associated parameters are still to be undertaken. 

Large problems can often be divided into smaller ones, which can then be solved at the same time. Evolving systems in

parallel high-performance computing will be explored in the following years. The rule-base modular and granular structure

of fuzzy models is an interesting aspect to be exploited in high-frequency online applications. Moreover, a variety of partic-

ularities of different applications and evolution aspects in hardware with low resources (aiming for smart evolving models)

are still to be addressed. 

6. Conclusion 

We presented a survey on evolving intelligent systems for regression and classification with emphasis on fuzzy and

neuro-fuzzy methods. In-depth analyses of research contributions, especially over the last 15 years, which are fundamental

to the current state-of-the-art of the field were discussed. The objective is guiding the readers to a clear understanding of

the past and current challenges and relevant issues in the area. The survey discussed various evolution mechanisms such as

adding, removing, merging and splitting clusters and local models in real-time. We highlighted open or partially addressed

research directions, which we believe will help future investigations and developments in the area. ( Tables 1 , 2 ) 
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